S0040-4039(96)00547-3

Unprecedented Alkylation of Pentafluorobenzene with Propane.

Alexander Orlinkov, Irena Akhrem, Sergei Vitt, Mark Vol'pin

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st., Moscow, Russia 117813.

Abstract: Propane has been found to alkylate pentafluorobenzene in the presence of aprotic organic superacids CBr_4nAlBr_3 (n = 1 or 2) in CH_2Br_2 solution at 0° , giving $C_6F_3Pr^i$ (1) in almost quantitative yield. In the absence of propane at the 20° , pentafluorobenzene reacts with CBr_42AlBr_3 to form $C_6F_5CBr_3$ in 40 % yield. Copyright © 1996 Elsevier Science Ltd

Recently we have found that complexes of polyhalomethanes with aluminium bromide display the properties of aprotic organic superacids¹⁻⁵. In the presence of these superacidic systems, alkane cracking, oligomerization and isomerization¹, ionic bromination of alkanes and cycloalkanes^{1,2}, carbonylation of alkanes³ and C₅-C₆ cycloalkanes^{4,5} with CO can be effectively achieved under mild conditions. The key stage of alkane transformations seems to be hydride ion transfer from RH to species such as CX₃⁺ resulting in corresponding carbocations (R⁺) together with the reduction of initial halomethane. The carbocations undergo subsequent transformations, such as cracking and isomerization, or, in the presence of carbocation trapping agents (CO, Br₂, ArH etc.), functionalization and alkylation (Scheme 1):

Scheme 1. | Cracking | i-C₄H₁₀ + i-C₅H₁₂ + oligomer | | isomerization | i-R⁺ | +H⁻ | i-RH | | R-H | | CO | RCO⁺ | | C₆H₅Y | R-C₅H₄-Y

This paper reports of a surprisingly effective and facile alkylation of pentafluorobenzene with propane in the presence of the superacidic systems CBr₄nAlBr₃ under mild conditions.

The reactions were carried out at 0-20° under propane atmosphere in the presence of CBr₄nAlBr₃ (n = 1 or 2) in CH₂Br₂. Pentafluorobenzene reacts with propane at 0° in the presence of a four-fold excess of CBr₄2AlBr₃ over the arene, to form a single product - $C_6F_3Pr^1$ (1) in an almost quantitative yield for 1,5 hours

(Scheme 2):

Scheme 2.

Both 1:1 and 1:2 CBr₄nAlBr₃ systems display high and similar activity as was observed earlier for other reactions^{1,2}. On the contrary, CCl₄·2AlCl₃ is noticeably less active: under similar conditions, the yield of 1 is 27% and equimolar CCl₄·AlCl₃ complex is non-active at all.

The reaction promoted by CBr₄ 2AlBr₃ at 20° is completed over 10 min and affords 1 in 60% yield. Throughout this time CBr₄ disappears completely; instead of it, CHBr₃ is formed in 68% yield. The increase of reaction time leads to lowering the yield of 1 due to its subsequent transformations.

In the presence of propane, alkylation products of C₆F₃H with CBr₄ or CHBr₃ have not been observed in spite of an excess of polyhalomethane in reaction media. In the absence of propane, however, the interaction of C₆F₃H with CBr₄ 2AlBr₃ proceeds slowly, resulting in C₆F₅CBr₃ (2). The yield of 2, calculated on CBr₄, reaches 40% over 24 hours at room temperature (Scheme 3):

Scheme 3.

$$F_5$$
 + $CBr_4\cdot 2AlBr_3$ $OCBr_3$ $OCBr_3$ $OCBr_3$ $OCBr_3$ $OCBr_3$

Since the formation of cations⁶ and even dications⁷ of aromatics under the action of powerful oxydizing agents has been proven, one may suggest that C_6F_5H propylation proceeds *via* hydride ion abstraction from the arene similarly to the reactions of alkanes with these superacids. The formed $C_6F_5^+$ then either attacks propane or adds to propylene generated from the alkane (Scheme 4):

Scheme 4

$$C_{6}F_{5}H + CBr_{3}^{+} \longrightarrow C_{6}F_{5}^{+} + CHBr_{3}$$

$$C_{6}F_{5}^{+} + \bigvee_{1) - C_{6}F_{5}H} \longrightarrow C_{6}F_{5}^{+}$$

$$C_{6}F_{5}^{+} + \bigvee_{1) - C_{6}F_{5}H} \longrightarrow C_{6}F_{5}^{+}$$

However, Scheme 4 seems unlikely due to the lack of even the traces of CHBr₃ among the products of reaction of C₆F₅H with CBr₄·2AlBr₃. Alternatively and more probably, the alkylation of C₆F₅H with both

propane and CBr₄ is a the reaction of electrophilic substitution, well-recognized for fluoroarenes⁸ (Scheme 5):

Scheme 5.

$$E = C_3H_7$$
, CBr_3

The initial attempts to alkylate C_6F_5H by ordinary Friedel-Craft methods were abortive. Nevertheless, the alkylation of C_6F_5H with CF_3H in the presence of an excess of SbF₅ at 0° for 50 hrs, resulting in the 2:1 mixture of $(C_6F_5)_2CFH$ and $(C_6F_5)_3CH$, respectively, was achieved. Similarly, C_6F_5H has been alkylated by 1,1,2-trichlorotrifluoroethane with the formation of a rather complicated mixture of products. In the presence of AlCl₃, alkylation of C_6F_5H by CH_2Cl_2 or $CHCl_3$ at 150° over 4,5-8 hrs has been also reported, and $(C_6F_5)_2CH_2$ or $(C_6F_5)_3CH$ were formed in 77 and 92% yields, respectively.

Thus, the first example of alkylation of a deactivated arene with a poorly alkylating agent, such as propane, was found. Promoted with aprotic organic superacids CBr₄·nAlBr₃, the reaction leads to a single product with high yield under mild conditions.

EXPERIMENTAL SECTION.

GC quantitative analyses were carried out with an internal standard using a "Model 3700" gas chromatograph equipped by FID and quartz capillary column (l = 25m/0.23mm, stationary phase - SE-54), temperature program - $60^{\circ}(0)$ - $8^{\circ}/min$ - $200^{\circ}(4)$. Identification of reaction products was carried out by GC-MS and ^{1}H , ^{19}F -NMR methods by use of VG 7070E and Bruker WP 200SY instruments, respectively. NMR-spectra were recorded in $C_{6}D_{6}$ as a solvent with Me₄Si and CFCl₃ as internal and external standards, respectively.

Typical procedures.

Pentafluorobenzene alkylation with propane.

The mixture of 4.0 g (14.9 mmol) AlBr₃ and 2.47 g (7.45 mmol) CBr₄ was stirred in 4 ml of CH₂Br₂ until a homogeneous solution was formed. The mixture was cooled to 0° and filled with dry propane. Then the solution of 0.31 g (1.85 mmol) C₆F₅H in 0.5 ml of CH₂Br₂ was quickly added under propane atmosphere. The mixture was stirred over 1.5 hrs under slight extra pressure of propane, then hydrolyzed with ice-water, extracted with CH₂Br₂ (2 x 5 ml) and dried with MgSO₄. According to GC-data, 0.37 g (1.75 mmol) of C₆F₅Prⁱ was formed, 94% based on C₆F₅H.

Pentafluorobenzene alkylation with CBr₄ 2AlBr₃ in the absence of propane.

0.95 g (3.6 mmol) of AlBr₃ and 0.6 g (1.8 mmol) of CBr₄ were mixed in round-bottomed flask equipped with a good magnetic stirrer and an excess of C₆F₅H (0.7 ml, ~1.0 g, 6.5 mmol) was added without

any other solvent. The bright red mixture was stirred vigorously at room temperature during 24 hrs, hydrolyzed with ice-water, extracted with ether, dried and analyzed quantitatively. According to GC, the conversion of CBr₄ is 0.4 g (66%) and the yield of C₆F₅CBr₃ reaches 40% based on CBr₄.

 $C_6F_5Pr^i$, m/z, (I_{rel} , %): 210 (M⁺, 41), 195 (100), 175 (21), 155 (9), 81 (14).

 $C_6F_5Pr^i$, NMR-¹H, δ (ppm), J (Hz): 1.20 (d., 6H), 7; 3.18 (sept., 1H), 7.

 $C_6F_5Pr^i$, NMR- ^{19}F , $\delta(ppm)$, J (Hz): -84.8 (m., 2F), 22: -80.4 (m., 1F), 22: -65.7 (m., 2F), 22.

 $C_6F_5CBr_3$, m/z, $(I_{rel}, \%)$: 337 (M+ - Br, 40), 259 (81), 179 (100), 80 (89), 79 (55).

This work was partly supported by the Russian Research Foundation (Grant 93-03-04556) and the International Science Foundation (Grant MRA 000).

REFERENCES

- 1. I.Akhrem, A.Orlinkov, M.Vol'pin. J.Chem.Soc., Chem.Commun., 1993, 8, 671
- 2. I.S.Akhrem, A.V.Orlinkov, L.V.Afanas'eva, E.I.Mysov, M.E.Vol'pin. *Tetrahedron Lett.*, in press
- 3. I.S.Akhrem, A.V.Orlinkov, L.V. Afanas'eva, M.E. Vol'pin. Izv. Russ. Acad. Sci., ser.khim., 1996, in press
- 4. I.S.Akhrem, S.Z.Bernadyuk, M.E.Vol'pin. Mendeleev Commun., 1993, 188
- 5. S.Z.Bernadyuk, I.S.Akhrem, M.E. Vol'pin. Mendeleev Commun., 1994, 183
- 6. G.Angelini, C.Sparapani, M.Sperenza. Tetrahedron 1984, 23, 4865; ibid., 4873
- 7. E. Wasserman, R.S. Hutton, V.J. Kuck, E.A. Chandross. J. Amer. Chem. Soc., 1974, 96, 1965
- 8. V.D. Shteingarts, Izvestiya Sibirskogo Otdeleniia Akad Nauk SSSR 1980, 7, 53
- 9. W.P.Beckert, J.W.Lowe. J.Org. Chem., 1967, 32, 582
- 10. V.V.Brovko, V.A.Sokolenko, G.G.Yakobson. Zh. Org. Khim. (Russ.), 1974, 10, 300

(Received in UK 16 January 1996; revised 19 March 1996; accepted 22 March 1996)